Диагностика функционального состояния поясничного отдела спинного мозга прыгунов в воду с помощью электронейромиографических методов

Колосова Е.В., Халявка Т.А.

Национальный университет физического воспитания и спорта Украины, Киев, Украина, e-mail: takhalyavka@ukr.net

Одним из информативных методов количественного анализа функционального состояния нервно-мышечной системы у спортсменов является стимуляционная электромиография (ЭНМГ). Применяя ЭНМГ-исследование камбаловидной мыщцы голени (m.soleus), мы можем оценить состояние сегментарного аппарата уровня L_v — S_1 пояснично-крестцового отдела спинного мозга, а именно этот отдел позвоночника испытывает наибольшие нагрузки во время тренировок [1-3].

В исследованиях принимали участие 20 высококвалифицированных спортсменов, специализирующихся в прыжках в воду; возраст обследуемых 18-25 лет. Использовали методику Н-рефлексометрии камбаловидной мышцы голени и методику определения скорости проведения нервного импульса по моторным волокнам большеберцового нерва (*n. tibialis*) [2, 4].

Анализировались следующие ЭНМГ-параметры: $\Pi_{\rm H}$ и $\Pi_{\rm M}$ (пороги возникновения H-ответа (норма 2-12 мА) и М-ответа (норма 5-20 мА)), $\Pi_{\rm H}/\Pi_{\rm M}$ (соотношение порогов возникновения H- и М-ответов, норма <1), $H_{\rm Makc}$ и $M_{\rm Makc}$ (амплитуды максимального H-ответа (норма 3-12 мВ) и максимального М-ответа (норма 3-15 мВ)), $H_{\rm Makc}/M_{\rm Makc}$ (соотношение амплитуд максимальных H- и М-ответов в %, норма 40-100 %). Определялись также значения СПИ_{БН}, скорости проведения импульса по моторным волокнам большеберцового нерва. Анализировали показатели для обеих конечностей.

По результатам исследований спортсмены были разделены на 2 группы. В группе 1 (15 человек) ЭНМГ-параметры находились в пределах нормы, в то

время как в группе 2 (5 человек) наблюдались значительные отклонения показателей от нормальных значений (табл. 1).

Табл.1. Значения ЭНМГ-параметров у прыгунов в воду.

ЭНМГ-параметр	Группа 1 (норма),	Группа 2 (нарушения),
	среднее± ошибка (se)	среднее ± ошибка (se)
Пн, правая конечность	8.9 ± 0.8	13.7 ± 1.1
$\Pi_{\rm H}$, левая конечность	7.9 ± 0.7	15.2 ± 0.6
Π_{M} , правая конечность	14.6 ± 1.7	14.7± 1.3
Π_{M} , левая конечность	13.2 ± 1.7	15.1 ± 2.5
$\Pi_{\rm H}$ / $\Pi_{\rm M}$, правая конечность	0.66 ± 0.05	0.93 ± 0.06
$\Pi_{\rm H}$ / $\Pi_{\rm M}$, левая конечность	0.65 ± 0.05	1.01 ± 0.16
Нмакс, правая конечность	5. 3 ± 0.6	2.1 ± 0.3
Н _{макс} , левая конечность	6.1 ± 0.4	2.1 ± 0.5
Ммакс, правая конечность	7.6 ± 0.8	7.7 ± 1.2
Ммакс, левая конечность	8.2 ± 0.4	7.6 ± 0.7
Н _{макс} /М _{макс} , праваяконечность	68.8 ± 3.7	29.0 ± 3.2
Н _{макс} /М _{макс} , левая конечность	74.2 ± 3.2	28.4 ± 7.5
СПИ _{БН} , правая конечность	44.9 ± 1.8	43.7 ± 2.5
СПИ _{БН} , левая конечность	45.5 ± 1.3	40.9 ± 3.1

Нарушения характеризовались тенденцией к повышению порогов Нответов, достоверным (p<0.01) снижением амплитуд Н- ответов и соотношений амплитуд Н- и М-ответов (рис.1). В то же время параметры М-ответов (порог, амплитуда) не имели достоверных отличий в двух группах. Это же относится и к скоростям проведения импульса по моторным волокнам n. tibialis (табл.1).

Можно предположить, что патологические изменения, происходящие у данной группы спортсменов, затрагивают лишь афферентную часть дуги моносинаптического рефлекса, являющуюся более восприимчивой к гипоксии, ишемии и (или) компрессии корешков спинномозгового нерва S_1 . Причиной отклонений от нормы могут являться травмы позвоночника либо длительная и

регулярная повышенная нагрузка на его пояснично-крестцовый отдел, сопутствующая спортивным тренировкам.

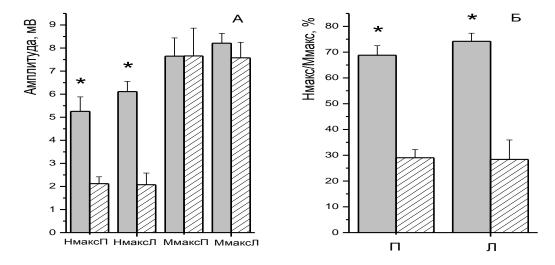


Рис.1. Сравнение основных ЭНМГ-параметров у спортсменов 1-й (серые столбцы) и 2-й (столбцы со штриховкой) групп.

А. По оси ординат – амплитуда максимальных H- и M-ответов, мВ. $H_{\text{макс}}\Pi$ - амплитуда H-ответа, правая сторона тела; $H_{\text{макс}}\Pi$ - амплитуда H-ответа, левая сторона тела; $M_{\text{макс}}\Pi$ - амплитуда M-ответа, правая сторона тела; $M_{\text{макс}}\Pi$ - амплитуда H-ответа, левая сторона тела.

Б. По оси ординат — величина соотношения максимальных H- и M- ответов, %. Π — правая, Π - левая сторона тела.

* - p<0.01 (группа 1 по сравнению с группой 2).

Таким образом, установлено, что у 25% исследуемых спортсменов, профессиональная деятельность которых связана с постоянной повышенной нагрузкой на поясничный отдел позвоночника, наблюдаются нарушения нормального функционирования сегментарного аппарата поясничного отдела спинного мозга, которые могут служить ранним диагностическим признаком компрессии корешков спинномозгового нерва S_1 , когда еще отсутствуют выраженные клинические симптомы.

Для предотвращения дальнейшего развития выявленных нарушений разрабатывается комплекс упражнений, направленных на укрепление и растяжение мышц спины и живота. Рекомендуются также плавание, физиотерапия и массаж.

Использованные источники:

- 1. Андриянова, Е.Ю. Электронейромиографические показатели и механизмы развития пояснично-крестцового остеохондроза / Е.Ю. Андриянова, Р.М. Городничев. Великие Луки, 2006.– 119 с.
- 2. Бадалян, Л.О. Клиническая электромиография / Л.О. Бадалян, И.А. Скворцов. М: Медицина, 1986. 368 с.
- 3. Команцев, В.Н. Методические основы клинической электронейромиографии. Руководство для врачей / В.Н. Команцев Санкт-Петербург, 2006. 349 с.
- 4. Massó N. Surface electromyography applications in the sport / N. Massó , F. Rey, D. Romero, G. Gual, L. Costa, A. Germán // Apunts Med. Esport. − 2010. − № 165 (45). − P. 121-130.